Variational Principle for Nonhyperbolic Ergodic Measures: Skew Products and Elliptic Cocycles
نویسندگان
چکیده
For a large class of transitive non-hyperbolic systems, we construct nonhyperbolic ergodic measures with entropy arbitrarily close to its maximal possible value. The systems consider are partially hyperbolic one-dimensional central direction for which there positive whose Lyapunov exponent is negative, zero, or positive. We zero and the topological set points zero. This provides restricted variational principle (zero exponent) measures. result applied setting $$\mathrm {SL}(2,\mathbb {R})$$ matrix cocycles counterpart Furstenberg’s classical result: an open dense subset elliptic upper metric infinite products subexponential growth norm.
منابع مشابه
Nonhyperbolic Step Skew-products: Entropy Spectrum of Lyapunov Exponents
We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of N , N ≥ 2, symbols and with C1 diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative, and zero exponents. We derive a multifractal analysis for the topological entropy of the level sets...
متن کاملVariational Principle for Fuzzy Gibbs Measures
In this paper we study a large class of renormalization transformations of measures on lattices. An image of a Gibbs measure under such transformation is called a fuzzy Gibbs measure. Transformations of this type and fuzzy Gibbs measures appear naturally in many fields. Examples include the hidden Markov processes (HMP), memoryless channels in information theory, continuous block factors of sym...
متن کاملVariational principle for generalized Gibbsian measures
We study the thermodynamic formalism for generalized Gibbs measures, such as renormalization group transformations of Gibbs measures or joint measures of disordered spin systems. We first show existence of the relative entropy density and obtain a familiar expression in terms of entropy and relative energy for ”almost Gibbsian measures” (almost sure continuity of conditional probabilities). We ...
متن کاملErgodic Averages and Integrals of Cocycles
Abstract. This paper concerns the structure of the space C of real valued cocycles for a flow (X,Zm). We show that C is always larger than the set of cocycles cohomologous to the linear maps if the flow has a free dense orbit. By considering appropriate dual spaces for C, we obtain the concept of an invariant cocycle integral. The extreme points of the set of invariant cocycle integrals paralle...
متن کامل$(varphi_1, varphi_2)$-variational principle
In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm, such that $f + g $ attains its strong minimum on $X. $ This result extends some of the well-known varitional principles as that of Ekeland [On the variational principle, J. Ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2022
ISSN: ['0010-3616', '1432-0916']
DOI: https://doi.org/10.1007/s00220-022-04406-w